Di- and Linear Tri-nuclear Carbonyl Ruthenium Clusters containing Asymmetrically Bridging 2,7-Disubstituted Naphthyridines[†]

Markus Mintert and William S. Sheldrick*

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

The diruthenium(1) complex *cis*- $[Ru_2(bmnapy)_2(CO)_4]$ **1** was prepared by reaction of 2-benzylamino-7-methyl-1,8-naphthyridine (Hbmnapy) with $[Ru_3(CO)_{12}]$ in benzene. The N¹,N² co-ordination mode of the bridging ligands is supplemented by N⁸ as an axial donor atom. In contrast, the analogous reaction with 7-methyl-1,8-naphthyridin-2-one (Hmonapy) or the corresponding 5-methyl-7-phenyl derivative (Hmopnapy) afforded the respective trinuclear clusters *cis*- $[Ru_3(monapy)_2(CO)_6]$ **2** and *cis*- $[Ru_3(mopnapy)_2(CO)_6]$ **3**, which exhibit three-atom chains with 46 valence electrons. X-Ray structural analyses demonstrate that the Ru–Ru bond distance remains effectively unchanged on going from the Ru₂ unit in **1** [2.707(1) Å] to the Ru₃ sequence in **3** [average 2.701(2) Å], for which an Ru–Ru–Ru angle of 168.6(3)° is observed.

A number of complexes containing 2,7-disubstituted 1,8naphthyridines as dinucleating ligands have been reported in the past decade. These include dirhodium(II) species of the type [Rh₂(O₂CMe)₃L]PF₆, which contain symmetrically substituted crescent-shaped ligands such as dpnapy [2,7-bis(2pyridyl)-1,8-naphthyridine].1 This neutral compound was also employed in the preparation of $[Ru_2Cl_2(bipy)_2(\mu-dpnapy)]$ - $[PF_6]_2$ (bipy = 2,2'-bipyridine) and $[Ru_2(O_2CMe)_3(\mu-dpnapy)]PF_6$, both of which contain a Ru_2^{4+} core and axially co-ordinating dpnapy pyridine rings.² The latter complex and the structurally analogous Ru_2^{5+} species $[Ru_2(O_2CMe)_3 (\mu$ -dcnapy)] (dcnapy = 1,8-naphthyridine-2,7-dicarboxylate) were characterized by X-ray structural analyses.^{2,3} We have also recently described⁴ the quadruply bridged dinuclear complexes $[Mo_2(monapy)_4]$ and $[Ru_2(monapy)_4]$, in which the asymmetrically substituted ligands monapy (Hmonapy = 7-methyl-1,8-naphthyridin-2-one) display respectively N,O and N,N co-ordination modes. An extension of this approach led us to study the reaction of $[Ru_2Cl(O_2CMe)_4]$ with Hmopnapy (5-methyl-7-phenyl-1,8-naphthyridin-2-one) in methanol at reflux, which leads to the successive formation of $[Ru_2Cl(mopnapy)_2(O_2CMe)_2], [Ru_2(mopnapy)_2(O_2CMe)_2]$ and $[Ru_2(mopnapy)_4]$.⁵ The reduction of the Ru_2 + core in the first complex is accompanied by a change in the co-ordination mode of the bridging naphthyridine derivatives from N,O to N,N in $[Ru_2(mopnapy)_2(O_2CMe)_2]$. Steric interactions between adjacent phenyl substituents must then be regarded as being responsible for the adoption of the electronically less favourable N,O binding pattern⁵ by three of the bridging ligands in the fully substituted polar complex [Ru₂-(mopnapy)₄].

The establishment of ambidentate properties for such asymmetrically substituted naphthyridine derivatives in dinuclear complexes with Ru-Ru bonds prompted us to investigate the ability of these ligands to adopt a trinucleating role in a suitable linear three-atom metal cluster. Only one complex, $[Rh_3(\mu-onapy)_2(CO)_2(cod)_2]CIO_4$ (Honapy = 1,8-naphthyridin-2-one, cod = cycloocta-1,5-diene) is known,⁶ albeit without direct metal-metal bonding $[Rh \cdots Rh$ distances 2.907(3) and 2.912(2) Å], in which a naphthyridine derivative

co-ordinates three metal atoms. A tetranuclear complex $[{Mo_2(O_2CBu^t)_3}_2(\mu$ -donapy]-2thf (H₂donapy = 1,8-naph-thyridine-2,7-dione, thf = tetrahydrofuran), containing two discrete Mo-Mo quadruple bonds of length 2.10 Å, in close proximity at a central Mo-Mo distance of 3.17 Å, has recently been studied by Chisholm and co-workers⁷ as a molecular model for building blocks of stiff-chain polymers.

We now report the reaction of $[Ru_3(CO)_{12}]$ with the naphthyridine derivatives Hbmnapy (2-benzylamino-7-methyl-1,8-naphthyridine), Hmonapy and Hmopnapy in benzene at reflux, which leads to the formation of *cis*- $[Ru_2(bm$ $napy)_2(CO)_4]$ **1**, *cis*- $[Ru_3(monapy)_2(CO)_6]$ **2** and *cis*- $[Ru_3(mopnapy)_2(CO)_6]$ **3** respectively. The carbonyl ruthenium cluster $[Ru_3(CO)_{12}]$ was chosen as the starting material as formation of a linear Ru-Ru-Ru chain might be expected to be possible with a minimum of reorganization of the original triangle of metal atoms.

[†] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

Experimental

Solvents were dried and distilled under argon before use. The IR spectra were recorded as KBr discs on a Perkin-Elmer 1760 spectrometer, electronic spectra on a Perkin-Elmer Lambda 15 spectrometer, and FAB mass spectra on a Bruker AM 400 spectrometer, and FAB mass spectra on a VG Autospec instrument with 3-nitrobenzyl alcohol as the matrix. Elemental analyses were performed on a Carlo Erba 1106 analyser. All reactions were carried out under argon by use of standard Schlenk techniques. The naphthyridine derivatives Hmonapy⁸ and Hmopnapy⁵ were synthesized according to literature procedures. The compound $[Ru_3(CO)_{12}]$ was obtained from Heraeus and used as received.

Syntheses.—Hbmnapy. A solution of 2-chloro-7-methyl-1,8naphthyridine (11.16 g, 62.5 mmol) in benzylamine (30 cm³) was refluxed for 8 h. After removal of the solvent in vacuum, the solid was recrystallized from toluene (20 cm³) to afford Hbmnapy in 86% yield (13.35 g) (Found: C, 77.2; H, 6.7; N, 16.6. Calc. for $C_{16}H_{15}N_3$: C, 77.1; H, 6.1; N, 16.8%). FAB mass spectrum: m/z 250 (100%, $[M - H]^+$). ¹H NMR (CD₂Cl₂): δ 2.63 (s, 3 H, CH₃), 4.79 (d, 2 H, CH₂), 5.66 (s, 1 H, NH), 6.67 (d, 1 H, H³), 7.03 (d, 1 H, H⁶), 7.36 (m, 5 H, C₆H₅), 7.76 (d, 1 H, H⁴) and 7.82 (d, 1 H, H⁵). IR (KBr disc): $\tilde{\nu}$ /cm⁻¹ 3202w, 3030w, 1624s, 1522s, 1344s, 1148w, 802w and 734m. UV/VIS (CH₂Cl₂): λ_{max} /nm (ϵ /dm³ mol⁻¹ cm⁻¹) 344 (1347), 262 (1032) and 229 (1386).

cis-[Ru₂(bmnapy)₂(CO)₄] 1. The compound Hbmnapy (0.050 g, 0.2 mmol) and [Ru₃(CO)₁₂] (0.043 g, 0.067 mmol) were refluxed in benzene solution (20 cm³) for 1 h, during which time the colour changed from orange to red. After cooling, pentane (20 cm³) was added and the resulting precipitate dried under vacuum to afford complex 1 in 82% yield (0.066 g). Suitable crystals were grown by gas diffusion of pentane into a toluene solution (Found: C, 53.9; H, 4.4; N, 9.8. Calc. for C₃₆H₂₈N₆O₄Ru₂: C, 53.3; H, 3.5; N, 10.3%). FAB mass spectrum: *m*/z 811 (100, *M*⁺), 783 (19, [*M* - CO]⁺), 755 (10, [*M* - 2CO]⁺) and 654 {49%, [*M* - Ru(CO)₂]⁺}. ¹H NMR (CD₂Cl₂): δ 2.25 (s, 3 H, CH₃), 4.76 (s, 2 H, CH₂), 6.26 (d, 1 H, H³), 6.37 (d, 1 H, H⁶), 6.94 (m, 5 H, C₆H₅), 7.16 (d, 1 H, H⁴) and 7.35 (d, 1 H, H⁵). IR (KBr disc): $\tilde{\nu}/cm^{-1}$ 2018s, 1941s (CO), 1623m, 1555m, 1440w and 1026w. UV/VIS (CH₂Cl₂): λ_{max}/nm (ϵ/dm^3 mol⁻¹ cm⁻¹) 402 (470), 348 (811) and 274 (1454).

cis-[Ru₃(monapy)₂(CO)₆] **2**. A benzene solution (20 cm³) of Hmonapy (0.032 g, 0.2 mmol) and [Ru₃(CO)₁₂] (0.064 g, 0.1 mmol) was refluxed for 1 h changing from orange to red with the formation of a red precipitate, which was filtered off and dried under vacuum to afford complex **2** in 90% yield (0.071 g) (Found: C, 44.8; H, 3.0; N, 5.9. Calc. for C₂₄H₁₄N₄O₈Ru₃: C, 45.9; H, 2.4; N, 5.9%). FAB mass spectrum: m/z 791 (51, $[M + H]^+$), 763 (27, $[M + H - CO]^+$) and 633 {100%, $[M - Ru(CO)_2]^+$ }. ¹H NMR (CD₂Cl₂): δ 2.62 (s, 3 H, CH₃), 6.98 (d, 1 H, H³), 7.09 (d, 1 H, H⁶), 7.66 (d, 1 H, H⁴) and 7.84 (d, 1 H, H⁵). IR (KBr disc): $\tilde{\nu}$ /cm⁻¹ 2060s, 2017s, 1999s (CO), 1651m, 592m, 576m and 448w. UV/VIS (CH₂Cl₂): λ_{max} /nm (ε /dm³ mol⁻¹ cm⁻¹) 422 (2757), 342 (8757) and 276 (9233).

cis-[Ru₃(mopnapy)₂(CO)₆] **3**. The compound Hmopnapy (0.047 g, 0.2 mmol) and [Ru₃(CO)₁₂] (0.064 g, 0.1 mmol) were refluxed in benzene solution (20 cm³) for 1 h, during which time the colour turned from orange to deep red. After cooling pentane (20 cm³) was added and the resulting precipitate dried under vacuum to afford complex **3** in 94% yield (0.089 g). Suitable crystals were grown by gas diffusion of pentane into a solution of **3** in 1,2,4-trichlorobenzene (Found: C, 37.4; H, 2.2; N, 6.4. Calc. for C₃₆H₂₂N₄O₈Ru₃: C, 36.5; H, 1.8; N, 7.1%). FAB mass spectrum: m/z 942 (100, M^+), 914 (15, $[M - CO]^+$), 886 (9, $[M - 2CO]^+$), 785 {44, $[M - Ru(CO)_2]^+$ } and 628 {23%, $[M - 2Ru(CO)_2]^+$ }. ¹H NMR (CD₂Cl₂): δ 2.66 (s, 3 H, CH₃), 6.85 (d, 1 H, H³), 7.27 (d, 1 H, H⁶), 7.35, 7.82 (m, 5 H, C₆H₅) and 7.88 (d, 1 H, H⁴). IR (KBr disc): $\tilde{\nu}$ /cm⁻¹

Fig. 1 Molecular structure of cis-[Ru₂(bmnapy)₂(CO)₄] 1

2042s, 1981s (CO), 1626m, 1575m, 1506m, 1442m, 1369m and 835w. UV/VIS (CH₂Cl₂): λ_{max}/nm ($\epsilon/dm^3 mol^{-1} cm^{-1}$) 441 (11 665), 351 (23 239) and 282 (21 242).

X-Ray Crystallography.—Crystal data and details of data collection and structure refinement for complexes 1 and 3 are presented in Table 1. Cell constants were determined by least-squares refinement on diffractometer angles for 25 reflections automatically centred on a Siemens P4 diffractometer using graphite-monochromated Mo-K α radiation ($\lambda = 0.710$ 73 Å). Data collection was performed in the ω mode with respective scan ranges of 1.0 and 1.1° and speed ranges of 2.0–14.6 and 3.0–14.6° min⁻¹. No significant alterations were observed in the control intensities registered every 100 reflections.

Structure analysis and refinement. Patterson synthesis (Ru atoms) followed by standard heavy-atom procedures. Fullmatrix least squares on |F| with hydrogen atoms for the naphthyridine ligands at calculated positions. The asymmetric unit of complex 1 contains 0.5 cis-[Ru₂(bmnapy)₂(CO)₄] moleties and 0.5 toluene solvent molecules. That of 3 displays two independent cis-[Ru₃(mopnapy)₂(CO)₆] molecules and three 1,2,4-trichlorobenzene solvent molecules. Anisotropic thermal parameters were introduced for the non-hydrogen atoms of cis-[Ru₂(bmnapy)₂(CO)₄] 1 and the Ru and Cl atoms in the crystal lattice of 3. Weighting scheme: $w = [\sigma^2 (F_o) + pF_o^2]^{-1}$, $R' = [\Sigma w (F_o - F_c)^2 \Sigma w F_o^2]^{\frac{1}{2}}$, with p = 0.0(1) and 0.0003 (3). Structure solution and refinement with SHELXS 86 and SELX 76.¹⁰. Fractional atomic coordinates for 1 and 3 are listed in Table 2, selected bond lengths and angles in Table 3.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Results and Discussion

Reaction of Hbmnapy with $[Ru_3(CO)_{12}]$ in refluxing benzene leads to the formation of $[Ru_2(bmnapy)_2(CO)_4]$ **1**, independent of whether a 3:1 or 2:1 molar ratio is employed. As may be seen from Fig. 1, the bridging naphthyridine ligands in this diamagnetic diruthenium(I) complex display an N¹,N² coordination mode, in contrast to the N¹,N⁸ binding pattern preferred by dinuclear ruthenium(I) complexes, in the absence of pronounced steric interactions.⁵ Perusal of the bond lengths and angles in Table 3 indicates, however, that N(8) is involved in the co-ordination sphere of the ruthenium atom Ru(1), by

 Table 1
 X-Ray crystallographic data for complexes 1 and 3

	1	3
Formula	C ₃₆ H ₂₈ N ₆ O ₄ Ru ₂ ·C ₆ H ₅ CH ₃	$C_{36}H_{22}N_{4}O_{8}Ru_{3}\cdot 1.5C_{6}H_{3}Cl_{3}$
М	902.9	1213.9
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	Pn
\vec{T}/K	293	173
a/A	18.640(4)	16.828(3)
b/Å	14.503(3)	12.533(3)
c/Å	15.829(3)	21.497(4)
β/°	113.67(3)	106.66(3)
\dot{U}/\dot{A}^3	3919(1)	4343(1)
Z	4	4
F(000)	1824	2388
$D_c/\mathrm{g}\mathrm{cm}^{-3}$	1.530	1.856
Crystal size/mm	$0.69 \times 0.26 \times 0.14$	$0.52 \times 0.43 \times 0.38$
μ/cm^{-1}	8.21	13.67
Absorption correction	w Scan	DIFABS ⁹
2θ Scan range/°	$2\theta \leq 55$	$2\theta \leq 50$
Reflections measured	5217	8344
Reflections independent	4863	7959
Observed reflections $[I \ge 2\sigma(I)]$	2766	4248
R _{int}	0.018	0.006
R	0.053	0.050
R'	0.053	0.050
Residual electron density/e Å ⁻³	0.97, -0.72	0.57, -0.36

participation in a four-membered RuNCN chelate ring with Ru(1)–N(1) and Ru(1)–N(8) distances of respectively 2.066(6) and 2.377(7) Å. This N¹,N⁸ co-ordination mode has previously been observed in [Fe(napy)₄][ClO₄]₂¹¹ and [Ru(napy)₄]X₂ (X = PF₆ or Cl).¹² Without involvement of N(8), the dinuclear complex 1 would exhibit a total electron count of only 30. This suggests that the symmetry-related N(8) atoms may be regarded as occupying the axial sites of the dinuclear complex, leading thereby to the expected 34 electron count. The associated stabilization of the Ru₂²⁺ core will presumably outweigh the energetic disadvantage of the N¹,N² bridging mode.

Complex 1 represents the first dinuclear ruthenium(1) species without additional axial ligands to be characterized. Despite the extremely distorted octahedral geometry at Ru(1), the Ru(1)– N(8) distance of 2.377(7) Å is only 0.073 Å longer than the average Ru–N_{ax} distance to the axially co-ordinated pyridine-2one (Hpyo) molecules in $[Ru_2(\mu-pyo)_2(CO)_4(Hpyo)_2]^{.13}$ The Ru–Ru bond length of 2.707(1) Å in 1 is similar to distances observed in previously characterized diruthenium(1) complexes, for instance 2.670(1) Å in $[Ru_2(\mu-pyo)_2(CO)_4(Hpyo)_2]^{.13}$ or 2.711(1) Å in $[Ru_2(\mu-pyo)_2(CO)_4(Hpyo)_2]^{.13}$ or 2.711(1) Å in $[Ru_2(\mu-pyo)_2(CO)_4(Hpyo)_2]^{.14}$ As a result of the marked difference of 0.45 Å between the N(1)····N(2) and Ru(1)–Ru(1a) distances in the RuNCNRu five-membered ring, the equatorial co-ordination planes of Ru(1) and Ru(1a) are inclined away from one another at an angle of 17.6°. A similar value of 16.2° was observed in $[Ru_2(\mu-pyo)_2(CO)_4(PPh_3)_2]^{.14}$

Evaluation of the molecular geometry of complex 1, in which the asymmetrically 2,7-disubstituted naphthyridine derivative adopts the novel μ -1 κ N¹,N⁸:2 κ N² co-ordination mode, suggests that such ligands could be capable of adopting a trinucleating function for linear Ru₃ chains with similar Ru–Ru distances. However, FAB mass spectra provide no evidence for the formation of a trinuclear species when the reaction between Hbmnapy and [Ru₃(CO)₁₂] is carried out with a 3:1 molar ratio of the starting compounds. In contrast the diamagnetic triruthenium complexes *cis*-[Ru₃(monapy)₂(CO)₆] **2** and *cis*-[Ru₃(mopnapy)₂(CO)₆] **3** may be prepared under analogous conditions. The FAB mass spectra and elemental analyses are in both cases in accordance with the formulation as trinuclear species. Both complexes also display a characteristic loss of an Ru(CO)₂ fragment in their mass spectra, leading to the formation of the cation of the dinuclear species [Ru₂L₂(CO)₄]⁺ (L = monapy or mopnapy). Crystals of **3**

Me

3

Table 2	Fractional atomic coordinates	10^{4}) for complexes	I and 3 with estimated	standard deviations	(e.s.d.s) in 1	parentheses
---------	-------------------------------	----------	-----------------	------------------------	---------------------	----------------	-------------

Atom	X	У	2		Atom	X	\mathcal{Y}	Ξ
Compound 1								
$\mathbf{Ru}(1)$	-783(1)	1199(1)	2266(1)		C(27)	1501(4)	-1626(5)	3430(5)
C(1')	-1161(4)	2067(6)	1333(7)		C(3)	209(4)	-961(5)	4388(5)
odý	-1404(4)	2615(5)	766(5)		C(4)	-471(4)	-1280(6)	4367(5)
$\tilde{C}(2')$	-634(4)	2097(6)	3138(6)		$\tilde{C}(5)$	-1979(6)	-1100(7)	3580(6)
$\tilde{O}(2')$	-520(3)	2681(4)	3682(5)		C(6)	-2568(6)	-633(7)	2945(7)
N(I)	-440(3)	163(4)	3244(4)		C(7)	-2443(4)	58(7)	2459(7)
C(2)	250(4)	-207(5)	3818(5)		C(71)	-3109(5)	594(7)	1683(7)
N(2)	882(3)	141(4)	3747(4)		N(8)	-1719(3)	316(4)	2584(4)
C(21)	1657(4)	-181(5)	4421(5)		C(9)	-1121(4)	-150(5)	3214(5)
C(22)	1957(4)	-1031(5)	4128(5)		C(10)	-1204(4)	-872(5)	3730(5)
C(23)	2746(4)	-1244(6)	4614(5)		C(31)	0	6396(10)	2500
C(24)	3069(5)	-2024(6)	4384(6)		C(32)	-167(10)	4995(8)	1656(5)
C(25)	2596(5)	-2598(6)	3675(6)		C(33)	-111(10)	5956(8)	1678(5)
C(26)	1828(5)	-2395(5)	3222(6)		C(34)	0	4566(10)	2500
Compour	nd 3							
Ru(11)	-1638(1)	1533(4)	-609(3)		O(232)	-1677(14)	5309(12)	3349(9)
Ru(13)	1626(1)	1587(4)	637(3)		N(31)	471(15)	2544(25)	4119(12)
Ru(12)	0	1348(4)	0		C(32)	1264(14)	2182(33)	4200(11)
C(111)	-1692(25)	573(22)	-1264(13)		O(32)	1795(13)	2274(13)	4777(8)
O(111)	-1618(17)	-132(16)	-1591(12)		C(33)	1442(20)	1509(28)	3712(13)
C(112)	-1974(18)	549(17)	-95(13)		C(34)	868(14)	1203(32)	3163(16)
O(112)	-2088(15)	-171(11)	203(9)		C(35)	-635(15)	1245(27)	2527(12)
C(121)	174(22)	371(19)	-582(13)		C(351)	-517(23)	615(24)	1996(14)
O(121)	366(15)	-217(17)	-927(10)		C(36)	-1425(18)	1671(27)	2542(13)
C(122)	-96(20)	138(21)	459(17)		C(37)	-1554(14)	2210(26)	3062(12)
O(122)	-24(13)	568(11)	822(9)		C(371)	-2413(16)	2428(30)	3090(14)
C(131)	2041(22)	823(24)	62(14)		C(372)	-2665(17)	2092(27)	3623(14)
O(131)	2253(20)	309(20)	-306(12)		C(373)	-3484(16)	2363(23)	3583(12)
C(132)	1677(21)	450(19)	1185(14)		C(374)	-3935(17)	2941(21)	3042(10)
O(132)	1721(13)	-234(11)	1556(8)		C(375)	-3665(15)	3312(22)	2526(11)
N(11)	-199(14)	2561(25)	690(13)		C(376)	-2859(16)	3009(28)	2549(15)
C(12)	-988(13)	2957(33)	584(13)		N(38)	-867(13)	2510(30)	3553(12)
O(12)	-1620(13)	2666(15)	98(9)		C(39)	-99(11)	2178(20)	3590(10)
C(13)	-1231(20)	3562(28)	1070(13)		C(310)	28(13)	1519(21)	3072(11)
C(14)	-637(16)	3782(33)	1627(16)		N(41)	174(18)	2180(21)	5401(16)
C(15)	794(15)	3684(28)	2319(13)		C(42)	- 590(14)	1693(22)	5277(13)
C(151)	671(26)	4245(27)	2872(16)		O(42)	-1219(14)	2101(11)	4834(9)
C(16)	1644(17)	3425(27)	2366(13)		C(43)	- 752(21)	843(22)	5675(14)
C(17)	1790(14)	2863(25)	1861(12)		C(44)	-139(19)	465(34)	6179(18)
C(171)	2628(16)	2521(30)	1836(14)		C(45)	1281(20)	559(31)	6831(18)
C(172)	3247(12)	1931(21)	2272(13)		C(451)	1228(23)	- 343(20)	7241(13)
C(173)	4035(13)	1771(19)	2197(11)		C(46)	2081(20)	1038(22)	6900(15)
C(174)	4291(16)	2193(20)	1685(11)		C(47)	2183(15)	1912(28)	6544(17)
C(175)	3694(19)	2780(32)	1231(18)		C(471)	3012(16)	2419(23)	6646(11)
C(176)	2910(23)	2891(35)	1325(17)		C(472)	3428(17)	2914(25)	7230(13)
N(18)	1203(13)	2586(30)	1294(12)		C(473)	4217(20)	3269(28)	7237(15)
C(19)	406(11)	2813(20)	1227(11)		C(474)	4466(19)	3391(25)	6676(11)
C(110)	191(17)	3401(30)	1739(13)		C(475)	4049(18)	2900(25)	6090(14)
N(21)	83(16)	2745(21)	-608(15)		C(476)	3320(18)	2387(26)	6108(12)
C(22)	853(14)	3221(22)	-438(12)		N(48)	1547(17)	2228(23)	6019(14)
O(22)	1431(14)	2983(10)	96(9)		C(49)	771(14)	1894(34)	5936(19)
C(23)	1011(19)	4199(22)	-733(13)		C(410)	656(21)	952(27)	6294(17)
C(24)	417(14)	4530(21)	-1265(13)		CI(11)	-6312(10)	536(14)	-1230(9)
C(25)	1047(19)	4402(31)	-2007(18)		CI(12)	-6280(12)	2704(13)	503(8)
C(251)	- 965(24)	5224(21)	-2460(14)		CI(14)	-3205(12)	1946(17)	928(8)
C(26)	1843(19)	3887(22)	-2130(14)		$C(\Pi^{*})$	-5444(15)	963(22)	624(15)
C(27)	- 1917(16)	3158(28)	-16/2(16)		$C(12^{-})$	-5401(14)	1898(22)	- 259(18)
C(271)	- 2/36(19)	2664(30)	-1/12(12)		$C(13^{\circ})$	-466/(15)	2195(22)	208(14)
C(272)	- 3188(19)	2245(25)	- 2310(14)		$C(14^{\circ})$	-404/(15)	1420(19)	334(14) 79(14)
C(273)	- 3901(18)	1620(26)	-241/(15)		C(15)	- 3984(16)	410(19)	/8(14)
C(274)	-4305(19)	1646(26)	-1935(11)		$C(10^{\circ})$	-4/2(10)	288(23)	- 301(13)
C(275)	-3850(17)	2089(26)	-1343(13)		Cl(21)	6552(10)	4493(14)	5424(0)
U(276)	-3065(17)	2009(20)	-1188(12)		CI(22)	3474(10)	2214(13)	3800(5)
N(28)	-12/3(10)	2/39(23)	- 1188(14)		C(21')	54/4(10) 57/7(15)	JUGO(12)	5099(3)
C(29)	-340(14)	323U(28) 4047(22)	- 1034(10)		C(21)	5727(15)	3172(18)	5210(14)
C(210)	-383(10)	404/(22)	- 1403(13)		C(22)	5757(15) 5107(14)	2757(22)	4675(15)
KU(21) Du(22)	1914(1)	34/1(4)	J400(J) 4862(1)		C(23)	J107(14) AA02(12)	3401(18)	4481(17)
Ru(22)	274(1)	3034(4)	4003(1)		C(24)	4402(12) 2420(16)	4381(18)	4796(12)
RU(23)	- 1330(1)	3403(4)	4221(3)		C(25)	-++20(10)	-101(10)	4770(12)

able 2 (contd.)							
C(211)	1963(17)	4582(15)	6030(11)	C(26')	5036(14)	4794(21)	5323(12)
O(211)	2090(14)	5234(13)	6429(8)	Cl(31)	1612(11)	1818(11)	8517(7)
C(212)	2109(19)	4517(17)	4919(13)	Cl(32)	1660(6)	3728(5)	7652(5)
O(212)	2320(14)	5001(14)	4535(8)	Cl(34)	-1542(16)	2965(24)	6370(10)
C(221)	119(22)	4567(19)	5486(12)	C(31')	694(10)	2096(15)	7916(9)
O(221)	83(15)	5221(14)	5856(10)	C(32')	759(9)	2971(16)	7527(10)
C(222)	321(20)	4813(19)	4347(17)	C(33')	38(12)	3193(19)	7026(10)
O(222)	458(14)	5627(12)	4139(10)	C(34')	-668(13)	2576(21)	6984(12)
C(231)	-1689(22)	4322(22)	4771(15)	C(35')	-765(13)	1690(21)	7350(12)
O(231)	-1971(15)	4863(17)	5089(10)	C(36')	-23(11)	1483(18)	7830(10)
C(232)	-1556(20)	4566(18)	3681(14)	. ,			

 Table 3
 Selected bond lengths (Å) and angles (°)

Compound 1			
Ru(1)-Ru(1a)	2,707(1)	Ru(1) - N(8)	2.377(7)
Ru(1) - N(1)	2.066(6)	Ru(1)-N(2a)	2.173(6)
Ru(1)-C(1')	1.851(9)	Ru(1)-C(2')	1.838(9)
Ru(1a)-Ru(1)-N(1)	79.6(2)	$\mathbf{Ru}(1\mathbf{a}) - \mathbf{Ru}(1) - \mathbf{N}(8)$	138.1(1)
Ru(1a)-Ru(1)-N(2a)	88.0(2)	$\mathbf{Ru}(1\mathbf{a})-\mathbf{Ru}(1)-\mathbf{C}(1')$	104.0(3)
Ru(1a)-Ru(1)-C(2')	88.5(2)	N(1)-Ru(1)-N(8)	58.8(2)
N(1)-Ru(1)-N(2a)	87.1(2)	N(1)-Ru(1)-C(1')	175.2(3)
N(1)-Ru(1)-C(2')	92.5(3)	N(2a)-Ru(1)-N(8)	85.6(2)
N(2a)-Ru(1)-C(1')	90.0(3)	N(2a)-Ru(1)-C(2')	175.6(3)
C(1')-Ru(1)-C(2')	90.7(4)	C(1')-Ru(1)-N(8)	117.3(3)
C(2')-Ru(1)-N(8)	97.1(3)	Ru(1)-N(1)-C(2)	135.8(6)
Ru(1)-N(1)-C(9)	102.6(4)	Ru(1)-N(8)-C(9)	88.1(5)
Ru(1)-N(8)-C(7)	154.7(5)	Ru(1)-N(2a)-C(2a)	121.0(4)
N(1)-C(2)-N(2)	115.4(7)	N(1)-C(9)-N(8)	110.5(7)
Compound 3			
$R_{11} = R_{11}$	2 701(2)	$R_{11}(12) - R_{11}(13)$	2 702(3)
Ru(11) - N(28)	2.15(3)	Ru(12) - Ru(13)	2.702(3)
$R_{\rm H}(11) - C(111)$	1.83(3)	Ru(11) = C(112)	1.83(3)
$R_{\rm H}(12) = N(11)$	222(3)	$R_{u}(12) - N(21)$	221(3)
$R_{12} = R_{11}$	1.83(3)	Ru(12) - Ru(21) Ru(12) - C(122)	1.84(3)
Ru(12) = C(121) Ru(13) = N(18)	216(3)	Ru(12) = O(22)	2.07(2)
Ru(13) = C(131)	1.85(3)	Ru(13) = O(22) Ru(13) = C(132)	1.84(3)
	1.00(2)		
Ru(11)-Ru(12)-Ru(13)	168.6(3)	Ru(12) - Ru(11) - N(28)	85.5(6)
Ru(12)-Ru(11)-O(12)	84.5(6)	Ru(12)-Ru(11)-C(111)	97.8(12)
Ru(12)-Ru(11)-C(112)	95.6(8)	N(28)-Ru(11)-O(12)	89.7(10)
N(28)-Ru(11)-C(111)	88.7(13)	N(28)-Ru(11)-C(112)	177.2(12)
O(12)-Ru(11)-C(111)	177.1(12)	O(12)-Ru(11)-C(112)	87.8(10)
C(111)-Ru(11)-C(112)	93.7(13)	Ru(11)-Ru(12)-N(11)	86.4(6)
Ru(11)-Ru(12)-N(21)	82.8(7)	Ru(11)-Ru(12)-C(121)	93.8(10)
Ru(11)-Ru(12)-C(122)	95.5(10)	Ru(13)-Ru(12)-N(11)	84.9(6)
Ru(13)-Ru(12)-N(21)	89.2(7)	Ru(13)-Ru(12)-C(121)	94.7(11)
Ru(13)-Ru(12)-C(122)	92.9(10)	N(11)-Ru(12)-N(21)	84.3(11)
N(11)-Ru(12)-C(121)	94.3(12)	N(11)-Ru(12)-C(122)	98.8(13)
N(21)-Ru(12)-C(121)	94.3(12)	N(21)-Ru(12)-C(122)	176.4(13)
C(121)-Ru(12)-C(122)	82.6(14)	Ru(12)-Ru(13)-N(18)	85.4(6)
Ru(12)-Ru(13)-O(22)	80.5(6)	Ru(12)-Ru(13)-C(131)	97.2(10)
Ru(12)-Ru(13)-C(132)	95.2(11)	N(18) - Ru(13) - O(22)	81.3(11)
N(18)–Ru(13)C(131)	175.3(13)	N(18) - Ru(13) - C(132)	89.6(14)
O(22)-Ru(13)-C(131)	95.2(11)	O(22) - Ru(13) - C(132)	170.3(13)
C(131)-Ru(13)-C(132)	94.0(14)		()

suitable for an X-ray structural analysis were grown by gas diffusion of pentane into a solution of the complex in 1,2,4-trichlorobenzene. The asymmetric unit in the polar space group Pn contains three solvent molecules and two three-atom clusters, the structure of the first of which is depicted in Fig. 2. The positions of the Ru atoms of the two $[Ru_3(mop-napy)_2(CO)_6]$ molecules are related by a pseudo inversion centre. As the metrical data for the independent clusters are similar, only the first molecule will be discussed in detail.

Clusters 2 and 3 represent the first examples of three-atom chains bridged by naphthyridine derivatives. The ligands adopt a head-to-tail orientation and display a μ_3 -1 κO^2 :2 κN^1 :3 κN^8

co-ordination mode. Inspection of the Ru-Ru bond lengths in 3 [2.701(2), 2.702(3) Å] indicates that these are effectively unchanged in comparison to the diruthenium(1) complex 1 [2.707(1) Å]. The Ru-Ru-Ru angle displays a value of $168.6(3)^{\circ}$. As a result of the blocking of the axial sites by the respective 7-methyl and 7-phenyl substituents in 2 and 3, these clusters exhibit an unusual electron count of 46. Such linear three-atom chains can invariably be described by a localized bonding description and many examples are known of metal carbonyl clusters with 50 valence electrons,¹⁵ including the triruthenium compound [Ru₃(η -C₅H₅)₂(CO)₈].¹⁶ To our knowledge, with the exception of the unusual compound [Mn₃(3-MeC₅H₆)₄]

Fig. 2 Structure of the first independent molecule of *cis*-[Ru₃(mopnapy)₂(CO)₆] 3

Fig. 3 Projection of complex 3 parallel to the axis of the Ru₃ chain

(41 electrons),¹⁷ all examples of three-atom chains with less than 50 valence electrons contain at least one metal atom belonging to the platinum group.¹⁵ For metals which conform to the 16-electron rule, a linear three-atom sequence will be expected to be associated with 44 valence electrons. Only one cluster $[Ni_3(C_{12}H_{17})_2]^{2-}$ has previously been reported¹⁸ which exhibits an electron count of 46 similar to those of **2** and **3**. The unusually low number of valence electrons in the trimetallic compounds presented in this work prompts the question as to whether agostic¹⁹ C-H···Ru interactions between the 7-methyl or 7-phenyl substituents and the terminal ruthenium atoms might provide axial electron pairs. Perusal of the molecular structure of **3** in the direction of the Ru_3 chain (Fig. 3) suggests that this is not the case. Distances of 2.49 and 2.54 Å are observed for $Ru(11)\cdots H(276)$ and $Ru(13)\cdots H(176)$, with the hydrogen atoms markedly displaced from the respective axes of the Ru-Ru bonds. Corroboration for this interpretation is provided by the absence of pronounced ¹H NMR high-field shifts for the protons involved.¹⁹ The phenyl rings are twisted at respective angles of 56.9 and 52.7° relative to the planes of their naphthyridine ring systems.

A formal description as an Ru^I-Ru⁰-Ru^I chain is reasonable for cluster 3. It is interesting that the Ru-Ru single bond lengths [2.701(2), 2.702(3) Å] in this 46-electron cluster are much shorter than in the 50-electron triruthenium cluster [Ru₃- $(\eta-C_5H_5)_2(CO)_8$]¹⁶ [2.889(1) Å], presumably as a result of the absence of axially co-ordinated ligands in the former compound. The adoption of a trinucleating function by the bridging naphthyridine derivative in 3 leads to marked changes in the X(2)-Ru-Ru (X = N or O) and N(1)-Ru-Ru angles in comparison to those of the dinuclear complex 1. For instance N(2a)-Ru(1)-Ru(1a) displays a value of $88.0(2)^{\circ}$ in the latter compound, which is much larger than the average value of $82.5(6)^{\circ}$ in 3. At the same time the N(1)-Ru-Ru [X(2)] angle increases from 79.6(2) to 83.9(7)° on going from 1 to 3. This means that the [N(1)] Ru-Ru [X(2)] bond shifts towards N(8) in 1 to allow for axial co-ordination of this nitrogen and away from N(8) in 3 to accommodate the third ruthenium atom in the Ru₃ chain. Significant increases are also observed for the angles N(1)-C(2)-X(2) [115.4(7) in 1, 123(3)° in 3], N(1)-C(9)-N(8)[110.5(7) in 1, 119(3)° in 3] and C(2)-X(2)-Ru [121.0(4) in 1, 129(2)° in 3]. The adoption of a very large C(2)-X(2)-Ru angle, which is necessary for a trinucleating co-ordination mode, will be associated with a relatively small energy disadvantage for an exocyclic oxygen O(2), as in mopnapy⁻ or monapy⁻. In contrast such an angle would be energetically very unfavourable for the trigonal nitrogen atom N(2) in bmnapy⁻, with the apparent consequence that this ligand is incapable of bridging a Ru₃ chain. The angle changes discussed above are also associated with pronounced increases in the distances $X(2) \cdots N(1)$ [2.27(1) in 1, 2.37(3) Å in 3] and $N(1) \cdots N(8)$ [2.20(1) in 1, 2.35(3) Å in 3] on going from the di- to the trinuclear complex. The analogous distances in $[H_2 mopnapy]Cl^5$ are 2.257(5) and 2.297(5) Å. In this context, it is interesting that, despite the flexibility of the naphthyridine derivative in 3, the N-Ru-Ru-N and N-Ru-Ru-O torsion angles in this cluster are relatively small (2.0-8.2°), as is also observed for 1 $[N(1)-Ru(1)-Ru(1a)-N(2) 2.7^{\circ}].$

This work has demonstrated, for the first time, a trinucleating capability of substituted naphthyridine ligands for three-atom metal chains. The employment of asymmetrically 2,7-disubstituted derivatives with bulky groups such as methyl or phenyl appears to be essential to prevent polymerization. For instance, the analogous reaction of $[Ru_3(CO)_{12}]$ with Honapy leads to

the formation of a precipitate, which cannot be dissolved in conventional organic solvents.

References

- W. R. Tikkanen, E. Binamira-Soriaga, W. C. Kaska and P. C. Ford, *Inorg. Chem.*, 1983, 22, 1147; 1984, 23, 141; J. L. Bear, L. K. Chau, M. Y. Chavan, F. Lefoulon, R. P. Thummel and K. M. Kadish, *Inorg. Chem.*, 1986, 25, 1516; R. P. Thummel, F. Lefoulon, D. Williamson and M. Y. Chavan, *Inorg. Chem.*, 1986, 25, 1675.
- 2 E. Binamira-Soriaga, N. L. Keder and W. C. Kaska, *Inorg. Chem.*, 1990, **29**, 3167.
- 3 J. P. Collin, A. Jouaiti, J.-P. Sauvage, W. C. Kaska, M. A. McLoughlin, N. L. Keder, W. T. A. Harrison and G. D. Stucky, *Inorg. Chem.*, 1990, **29**, 2238.
- 4 W. S. Sheldrick and M. Mintert, Inorg. Chim. Acta, 1994, 219, 23.
- 5 M. Mintert and W. S. Sheldrick, Inorg. Chim. Acta, 1995, 236, 13.
- 6 A. Tiripicchio, F. J. Lahoz, L. A. Oro, M. A. Ciriano and B. E. Villaroya, *Inorg. Chim. Acta*, 1986, 111, L1.
- 7 R. H. Clayton, M. H. Chisholm, J. C. Huffman and E. B. Lobkovsky, Angew. Chem., 1990, 103, 893; J. Am. Chem. Soc., 1991, 113, 8709.
- 8 E. V. Brown, J. Org. Chem., 1965, 30, 1607; M. Wozniak and M. Skiba, Pol. J. Chem., 1981, 55, 2429.
- 9 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
- 10 G. M. Sheldrick, SHELXS 86, A Program for Structure Determination, University of Gottingen, 1986; SHELX 76, A Program for Structure Refinement, University of Cambridge, 1976.
- 11 A. Clearfield and P. Singh, *Chem. Commun.*, 1970, 389. 12 M. Mintert and W. S. Sheldrick, unpublished work.
- 13 P. L. Andreu, J. A. Cabeza, G. A. Carriedo, V. Riera, S. Garcia-Granda, J. Van der Maelen and G. Mori, *J. Organomet. Chem.*, 1991, **421**, 305.
- 14 S. J. Sherlock. M. Cowie, E. Singleton and M. M. de V. Steyn, J. Organomet. Chem., 1989, 361, 353.
- 15 D. M. P. Mingos and A. S. May, in *The Chemistry of Metal Cluster Complexes*, eds. D. F. Shriver, H. D. Kaesz and R. D. Adams, VCH, New York, 1990, ch. 2, pp. 29–31.
- 16 N. Cook, L. E. Smart, P. Woodward and J. D. Cotton, J. Chem. Soc., Dalton Trans., 1979, 1032.
- 17 M. C. Böhm, R. D. Ernst, R. Gleiter and D. R. Wilson, *Inorg. Chem.*, 1983, 22, 3815.
- 18 K. Jonas, C. Kruger and J. C. Sekutowski, Angew. Chem., Int. Ed. Engl., 1979, 18, 487.
- 19 M. Brookhart and M. L. H. Green, J. Organomet. Chem., 1983, 250, 395.

Received 14th March 1995; Paper 5/01598G